Effect of Fortified Bread with turmeric and Some Plant Seeds on Diabetic Rats
Ashraf A. Abd El-megeid.¹
Abdel El-Rahman M. Attia.¹, Omnia G. Refaat.¹ and Hanan A. A. Hessien ¹*
*dr.hananelhawary@hotmail.com
¹Nutrition and Food Science Department, Faculty of Home Economics, Helwan University, Cairo, Egypt

Abstract:

The present work was conducted to manufacture fortified bread with turmeric and some plant seeds suitable for diabetes and study the effect of fortified turmeric bread with fenugreek, flaxseed and pumpkin seeds on glucose and lipids profile in serum of diabetic rats. Two main experimental groups were established: Group 1 (n = 6 rats) used as a negative control group fed on diet containing 300 g unfortified bread. Group 2 (60 rats): were injected with alloxan (150 mg/kg body weight) to induce hyperglycemia and fed on basal diet, then this group was divided into ten subgroups (6 rats each). Subgroup (1) fed on diet containing 300 g unfortified bread (as a positive control group). Subgroups (2) fed on diet containing 300 g fortified bread with (1.5%) turmeric. Subgroups from (3 -10) fed on diets containing 300 g fortified turmeric bread with 5% and 15% (fenugreek, flaxseed, pumpkin seeds and combination of all seeds), respectively. Injected rats with alloxan caused significant decrease in food intake, BWG %, HDL-c, while the mean values of serum glucose, cholesterol, triglycerides, LDL-c, VLDL-c, heart weight / body weight % increased significantly in the positive control group, as compared to the negative control group. Treated diabetic rats with the fortified bread with turmeric (1.5%) and fortified turmeric bread with fenugreek, flaxseed, pumpkin seeds and combination of all these seeds improved all parameters, especially the group fed diet containing fortified turmeric bread with the combination of fenugreek, flaxseed and pumpkin seeds (15%).

Key words: hyperglycemia, bread, turmeric, fenugreek, flaxseed, Pumpkin, glucose, lipids profile, serum.

نشر فى المؤتمر العربي الاول بعنوان (افاق التعاون العربي لتنمية المجتمع)9-10/5/2012
References

Ishita, C.; Kaushik, B.; Uday, B. and Ranajit, K. B. (2004): Turmeric and curcumin: Biological actions and medicinal applications. CURRENT SCIENCE, VOL. 87, NO. 1, 10 JULY.

The effect of chocolate with nuts on hyperglycemia and its complications in diabetic rat model

Ashraf Abdel-Megeid; Abd El-Rahman Attia; Omnia Refaat and Hanan Abdel-Mogoud

Nutrition and Food Science Department, Faculty of Home Economics, Helwan University, Cairo, Egypt.

Background: Recent data is linking consumption of flavonoid-rich cocoa products to the promotion of health.

Objective: To evaluate the beneficial effect of consuming black chocolate containing fructose and (almond or hazelnut) on hyperglycemia and its complications in diabetic rat model.

Design: Two main experimental groups were established: Group 1 (n = 7 rats) used as a negative control group fed on basal diet (B S -). Group 2 (49 rats): injected with alloxan (150 mg/kg body weight) to induce hyperglycemia and fed on (B.D.), then this group was divided into seven subgroups (7 rats each). Subgroup (1) fed on B.D. (as a positive control B D +). Subgroups (2 & 3) fed on basal diet containing 50 g. and 100 g. chocolate without nuts/kg diet, respectively. Subgroup (4 & 5) fed on basal diet containing 50 g. and 100 g. chocolate with almond/kg diet, respectively. Subgroup (6 & 7) fed on basal diet containing 50 g. and 100 g. chocolate with hazelnut/kg diet, respectively. The feeding study continued for 4 weeks then blood samples were collected and the liver organ was separated for laboratory investigations.

Results: Food intake did not change significantly between all treated groups, as compared to the (-) and (+) two control groups. Gain in body weight expressed in percentage (BWG %) decreased significantly in the (+) control, compared with respective mean value of the (-) control. Diabetic rats consuming chocolate-containing diets with or without nuts showed significant improvement in BWG%, as compared to the respective mean value obtained with (+) control group. All diabetic rats consuming diets containing chocolate with or without nuts has significant lower mean serum glucose level compared with the respective mean value in the (+) control. The consumption of the chocolate containing diets led also to significant reductions in the lipid profile of the liver; i.e., cholesterol, triglycerides, low and very low density lipoprotein-cholesterol LDL-c and VLDL-c, as compared to the (+) control. The level of high density cholesterol concentration was the only lipid parameter, which was elevated in the liver of the diabetic rats after consuming the chocolate containing diet. The consumption of the chocolate containing diets led to improvement of the liver function as evidenced with lowering in the mean activities of aspartate amino transferase [AST] and alanine amino transferase [ALT] compared to the respective mean values of the (+) control. The mean uric acid, urea nitrogen and creatinine concentrations; biomarkers of kidney function were significantly lower in all diabetic groups consuming diets containing chocolate with or without nuts than the respective mean values found in the (+) control rats.
Conclusions: Incorporating of chocolate with nuts at 10% in the diet can ameliorate the pathogenesis associated with diabetogenesis.
The effect of chocolate with nuts on hyperglycemia and its complications in diabetic rats

By

Hanan Amin Abdel-Mogoud

M.Sc Thesis (2009)

Nutrition and Food Science Department,

Faculty of Home Economics- Helwan University

ABSTRACT

The present work was conducted to study the influence of black chocolate prepared with fructose and (almond or hazelnut) on hyperglycemia and its complications in diabetic rats. Two main experimental groups were established: Group 1 (n = 7 rats) used as a negative control group fed on basal diet (B.D). Group 2 (49 rats): injected with alloxan (150 mg/kg body weight) to induce hyperglycemia and fed on (B.D.), then this group was divided into seven subgroups (7 rats each). Subgroup (1) fed on B.D. (as a positive control group). Subgroups (2 & 3) fed on basal diet containing 50 g. and 100g. Chocolate without nuts/kg diet, respectively. Subgroup (4 & 5) fed on basal diet containing 50 g. and 100 g. chocolate with almond/kg diet, respectively. Subgroup (6 & 7) fed on basal diet containing 50 g. and 100 g. chocolate with hazelnut/kg diet, respectively.

Food intake did not changed significantly between all treated groups, as compared to the control groups (- & +). Body weight gain% (BWG %) decreased significantly, while liver, kidney and heart weight / body weight % increased significantly in the positive control group, as compared to the negative control group. Treated diabetic rats with the two levels of chocolate with or without nuts led to significant
improvement in BWG% and organs weight / body weight %, as compared to the positive control group.

The mean values of serum glucose, cholesterol, triglycerides, LDL-c, VLDL-c, uric acid, urea nitrogen, creatinine, AST and ALT decreased significantly in all diabetic groups which were treated with two levels from chocolate with or without nuts, while serum HDL-c increased significantly, as compared to diabetic group (control positive). The best results were found in the group fed on diet containing 100 g. chocolate with almond/kg diet and group fed on diet containing 100 g. chocolate with hazelnut/kg diet.

Key words: chocolate, cocoa, almonds, hazelnut, hyperglycemia, lipid fraction, kidney function, liver enzymes.

8. References

Official methods of analytical chemists.

15th ed Washington; D.C., U.S.A.

Partial replacement of saturated fatty acids with almonds or walnuts lowers total plasma cholesterol and low density lipoprotein cholesterol.

Effect of combination fresh garlic and onion on hyperglycemic and hypercholesteromic rats.

Fourth Egyptian Conference of home economics, 1-2 September
1999, minufiya University.

Inhibition of angiotensin converting enzyme (ACE) activity by flavan-3-ols and procyanidins.

F.E.B.S. Lett.; 555:597–600.

ADA (American Diabetes Associational) (2000):

Diabetes Care; 23:S4.Suppl. (1).

HPLC method for the quantification of procyanidins in cocoa and chocolate samples and correlation to total antioxidant capacity.

Evaluation of Some Nutritional Characteristics of Indian Almond (Prunus amygdalus) Nut.

Turkish tombul hazelnut (Corylus avellana L.). Compositional characteristics.

J. of agriculture and food chemistry; 51(13):3790-3796.

Enzymatic determination of total serum cholesterol.

Effects of walnut consumption on plasma fatty acids and lipoproteins in combined hyperlipidemia.

Effects of chronic peanut consumption on energy balance and hedonics.

Int. J. Obes. Relat. Metab. Disord.; 26:1129 –37.

Nutritional composition of hazelnuts and its effects on glucose and lipid metabolism.

Acta Hort. (ISHS); 445:305-310.

Omega-3 fatty acid supplementation prevents hepatic steatosis in a murine model of nonalcoholic fatty liver disease.

Pediatric Research; 57:445-452.

Amal, A.A.G. (1999):

Studies on production of chocolate for diabetes. MS.c thesis, Food Science Department, Faculty of Agriculture, Moshtohor, Zagazig University (Benha Branch).

Characterization of several hazelnuts (Corylus avellana L.) cultivars based in chemical, fatty acid and sterol composition.

American Diabetes Association (2007):

Diagnosis and classification of diabetes mellitus.

Diabetes Care; 30: 42-47.

American Diabetes Association (2001):

American Diabetes Association (2002a):

Evidence based nutrition principles and recommendations for the treatment and prevention of diabetes and related complications.

American Diabetes Association (2002b):

Evidence based nutrition principles and recommendations for the treatment and prevention of diabetes and related complications.

Diabetes care; 25:550-60.

American Diabetes Association (2004a):

Diagnosis and classification of diabetes mellitus.

Diabetes care; 27 (suppl I): S5-10.

American Diabetes Association (2004b):

Screening for type-2 diabetes.

Diabetes care, 27 (Suppl I): S11-14.
American Diabetes Association (2004c):

Gestational diabetes mellitus.

Diabetes care; 27 (Suppl I): S88-93.

American Diabetes Association Consensus Statement (1993):

Diabetes care; 16: 72-78.

Principals of sensory evaluation of food.

Academic press, New York.

Amin, I.; Faizul, H.A. and Azli, R. (2004):

Effect of cocoa powder extract on plasma glucose levels in hyperglycaemic rats.

Nutrition & Food Science; 34(3): 116 – 121.

Tree nuts and the lipid profile: a review of clinical studies.

British Journal of Nutrition; 96, Suppl. 2, S68–S78.

Hypolipidemic effects of high-carbohydrate, high-fiber diets.

Metabolism; 29:551–558.

Whole grain foods and hear disease risk.

Carbohydrate and fiber recommendations for individuals with diabetes: A Quantitive assessment and meta-analysis of the evidence.

Almonds and Biomarkers of Lipid Peroxidation: A Randomized Controlled Cross-over Trial.

Almonds and postprandial glycemia. A dose - response study.

Metabolism Clinical and Experimental; 56:400– 404.

Almonds, Glycemic Index, Dietary Antioxidants and Risk Factors for Coronary Heart Disease.

Cocoa and Chocolate: Composition, Bioavailability, and Health Implications.

J. of Medicinal Food; 3(2): 77-105.

Antonio, A. (2001):

Monounsaturated fatty acid diets improve glycemic tolerance through increased secretion of glucagon like peptide. *Endocrinology; 142(3):1148-1155.*

The effect of paravastation on serum cholesterol levels in hypercholesterolemic diabetic rabbits.

Acta; 1096 (3):2538-244.

Stearic acid, *trans* fatty acids, and dairy fat: effects on serum and lipoproteinlipids, apolipoproteins, lipoprotein(a), and lipid transfer proteins in healthy subjects.

Aronson, D. and Rayfield, E.J. (2002):

How hyperglycemia promotes atherosclerosis.

Molecular mechanisms cardiovasc diabetol; 1: 1-10.

Chocolate as a source of tea flavonoids.

Lancet; 354:488 (letter).

(2001):

Catechin intake and associated dietary and lifestyle factors in a representative sample of Dutch men and women.

Serum antioxidant status in streptozotocin-induced diabetic rats.

Thiamine (vitamin B1) protects against glucose and insulin mediated. Proliferation of human infragenicular arterial smooth muscle cells.

Post transplant diabetes mellitus: the last 10 years with Tacrolimus.

Determination of fatty acid compositions, oil contents and some quality traits of hazelnut genetic resources grown in eastern Anatolia of Turkey. *Elsevier Inc.*

Bantle, J. P.; Sawnson, J.E. and Thomas, W., (1993):

Metabolic effects of dietary sucrose in type II diabetic subjects.

Diabetes care; 16: 1301-1305.

Effect of dietary fructose on plasma lipids in healthy subjects.

The cost of diabetes in Latin American and the Caribbean.

Bayard, V.; Chamorro, F.; Motta, J. and Hollenberg, N.K. (2007):

Does flavanol intake influence mortality from nitric oxide-dependent processes? Ischemic heart disease, stroke, diabetes mellitus, and cancer in Panama.

Potential cardiovascular health benefits of procyanidins present in chocolate and cocoa.

American Chemical Society; 177–186.

Endocrine and metabolic disorders of carbohydrate metabolism. In: Merck Manual of Diagnosis and Therapy.

Bell, R.H. and Hye, R.J. (1992):

Effects of diets rich in monounsaturated fatty acids on plasma lipoproteins-The Jerusalem Nutrition Study. II.Monounsaturated fatty acids vs carbohydrates.

Cocoa Intake, Blood Pressure, and Cardiovascular Mortality The Zutphen Elderly Study.

Effects of dietary protein restriction on regional amino acid metabolism in insulin-dependent diabetes mellitus.

Cholesterol-Lowering effects of dietary fiber, Ametaanalysis.

Effects of a plant-based diet rich in whole grains, sun-dried raisins and nuts on serum lipoproteins.

HDL cholesterol determination after separation high-density

Cai, H.; Griendling, K.K. and Harrison, D.G. (2003):

Campbell, J.A. (1963):

Carl, L. K.; Roberta, R .H.; Patricia, I.O.; Cesar, G. F. and Harold, H. S. (2005):

Cocoa antioxidants and cardiovascular health.

Oxidation of LDL by myeloperoxidase and reactive nitrogen species: reaction pathways and antioxidant protection.

Cavanagh, E.M.; Piotrkowski, B. and Basso, N. (2003):

Cavanagh, E.M.; Piotrkowski, B. and Fraga, C.G. (2004):

Concerted action of the renin-angiotensin system, mitochondria, and antioxidant defenses in aging.

Lipid characteristics and essential minerals of native Turkish hazelnut varieties (Corylus avellana L.).

Food Chemistry; In Press, Corrected Proof.

Chandalia, M. (2000):

Zinc, Insulin and Diabetes.

A nutrition and health prespective on almond.

J. of Science of Food and Agriculture; 86(14): 2245-2250.

Flavonoids from almond skins are bioavailable and act synergistically with vitamins C and E to enhance hamster and human LDL resistance to oxidation.

J. Nutr.; 135, 1366–1373.

Almond consumption reduces oxidative DNA damage and lipid peroxidation in male smokers.
Nutritional potential of the nut of tropical almond (Terminalia catappia L.).

Cocoa polyphenols and inflammatory mediators.

Nutrition and prevention of type 2 diabetes.

Effect of supplementation with vitamin C or E on albuminuria, glomerular TGF and glomerular size in diabetes.

Effect of Almonds on Insulin Secretion and Insulin Resistance: A Randomized Controlled Cross-over Trial.

The Garden of Eden—plant based diets, the genetic drive to conserve cholesterol and its implications for heart disease in the21st century.

Elsevier Science Inc.; S1095-6433(02)00345-8.

Almonds Decrease Postprandial Glycemia, Insulinemia, and Oxidative Damage in Healthy Individuals.

Type 2 diabetes and the vegetarian diet.
American Journal of Clinical Nutrition; 78(3) 610S-616S.

Effect of almonds on insulin secretion and insulin resistance in nondiabetic hyperlipidemic subjects: a randomized controlled crossover trial.

Metabolism; 57(7):882-887.

Dark chocolate is healthy chocolate.

Diabetes Control and Complications Trial Research Group (DCCT) (1993):

The effect of intensive treatment of diabetes on the development
and progression of long-term complications in insulin-dependent diabetes mellitus.

N. Engl. MED.; 329(14):977-986.

Almonds and Almond Oil Have Similar Effects on Plasma Lipids and LDL Oxidation in Healthy Men and Women.

J. Nutr.; 132:703-707.

Food of the gods: cure for humanity? A cultural history of the medicinal and ritual use of chocolate.

J. Nutr.; 130:2057S–2072S.

Ding, E.L; Hutfless, S.M; Ding, X. and Girotra, S. (2006):

Chocolate and prevention of cardiovascular disease:

a systematic review. Nutrition and metabolism; 3(2).*

Effect of Cocoa and Tea Intake on Blood Pressure A Meta-analysis. _Arch Intern Med.; 167(7):626-634._

Inhibition of GAPDH activity by poly (ADP-ribose) Polymerase activities three major pathways of hyperglycemic damage in endothelial cells.

Insulin injections enhance cholesterol gallstone incidence by changing the biliary cholesterol saturation index and apo A-I concentration in hamsters fed a lithogenic diet.

Effects of phenolics on vascular endothelial function.

L-Arginine ameliorates oxidative stress in alloxan induced experimental diabetes mellitus.

Elliot, J.R. and Marilyn, V.V. (2006):

Pathophysiology and clinical management of diabetes and prediabetes.

Taylor & Francis Group.

The emerging role of flavonoid-rich cocoa and chocolate in cardiovascular health and disease.

Plasma lipid profile and target organ effect of theobromine extracts from cocoa in wistar rats.

Eve, G. (2000):

The family and friends guide to diabetes.

John Wiley & Sons, Inc.

Plasma 15-F_{2t} isoprostane concentrations are increased during acute fructose loading in type 2 diabetes.

Death by chocolate: facts and myths.

NutrToday; May - June. Available at: www.findarticles.com/cf_0/m0841/n3_v33/21181282/print.jhtml.

Ferrannini, E., (1998):

Insulin resistance versus insulin deficiency in non-insulin dependent diabetes mellitus: problems and prospects.

Flavanol rich cocoa induces nitric-oxide-dependent vasodilation in healthy humans.

J. Hypertens.; 21(12):2281–6.

Cocoa flavanols and brain perfusion.

Food and Drug Administration (FDA) (1999):

Whole grain foods authoritative statement claim notification docket.
Washington, DC, 99 P-95.

Fossati, P.C. and Principle, L. (1982):

Enzymatic colorimetric determination of total serum triglyceride.

Fossati, P.C.; Principle, L. and Berti, G. (1980):

Egyptian colorimetric method of determination of uric acid in serum.

Fraga, C.G. (2005):

Cocoa, diabetes, and hypertension: should we eat more chocolate?

Nutrition principles for the management of diabetes and related complications.
Diabetes Care; 17:490–518.

Franz, M.J.; Bantle, J.P. and Beebe, C. A. (2004):

Diabetes care, 27: 536-46.

Fraser, G.E.; Sabaté, J.; Beeson, W.L. and Strahan, M. (1992):
A possible protective effect of nut consumption on risk of coronary heart disease.

Fraser, G.E. (1999):

Fraser, G.E.; Bennett, H.W.; Jaceldo, K.B. and Sabate, J. (2002):

Effect on body weight of a free 76 kilojoule (320 calorie) daily supplement of almonds for six months.

Sugars, hypertriglyceridemia and cardiovascular disease.

Fried, L.F.; Orchard, T.J. and Kasiske, B.L. (2001):

Friedewald, W.T.; Leve, R.I. and Fredrickson, D.S. (1972):

Estimation of concentration of low-density lipoprotein separated by three different methods.

Frier, B.M.; Truswell, A.S.; Shepherd, J.; Delooy, A. and Jung, R. (1999):

Whole grain intake and the risk of type-2 diabetes, A prospective

Secondary forms of diabetes.

Joslin’s diabetes mellitus, 13th edition.

Gannon, M.C. (2001):

Effect of protein ingestion on the glucose appearance rate in people with type-2 diabetes.

Ganong, W.F. (1995):

Endocrin function of pancreas and the regulation of carbohydrate metabolism.

Gartner, L.M. and Greer, F.R., (2003):

Section on Breastfeeding and Committee on Nutrition, American Academy of Pediatrics, Prevention of rickets and vitamin D deficiency: New guidelines for vitamin D intake.

Pediatrics; 111:908-910.

Nuts and Plasma Lipids: An Almond-Based Diet Lowers LDL-C while Preserving HDL-C.

Impact of a high-monounsaturated-fat diet on lipid profile in subjects with type-1 diabetes.

Fibre and breast cancer.

Long-term dietary treatment with increased amounts of fiber-rich low-glycemic index natural food improves blood glucose control and reduces the number of hypoglycemic events in patients with type 1 diabetes.

Diabetes care; 23: 1451.

Difference in serum lipids in Australian children: Is diet responsible?

Mood state effects of chocolate.

JAD-03219; 11.

Consumption of tall oil-derived phytosterols in a chocolate matrix

Graf, B.A.; Milbury, P.E. and Blumberg, J.B. (2005):

Short-term administration of dark chocolate is followed by a significant increase in insulin sensitivity and a decrease in blood pressure in healthy persons.

Gray, R.O. (1996):

Comparison of the ability of bread versus bread plus meat to treat and prevent subsequent hypoglycemia in patients with insulin dependent diabetes.

Grif, A. (2007):

Chocolate does a heart good.

Critical Carenurse.; Vol 27, No. 1.

Hatano, T.; Miyatake, H.; Natsume, M.; Osakabe, N.; Takizawa ,T.; Ito,

Proanthocyanidin glycosides and related polyphenols from cacao liquor and their antioxidant effects.

Phytochemistry; 59:749–758.

Hazelnut oil administration reduces aortic cholesterol accumulation and lipid peroxides in the plasma, liver, and aorta of rabbits fed a high-cholesterol diet.

Bioscience, Biotechnology and Biochemistry; 68(10):2050-2057.

Choline in the nutrition of chicks.

Dietary fat and serum lipids: an evaluation of the experimental data.

Protein content of the diabetic diet (Technical Review).

Diabetes care, 17: 1502.

Cocoa flavanols and platelet and leukocyte function: recent in vitro and ex vivo studies in healthy adults.

Diabetes mellitus in Egypt: risk factors and prevalence. International Science Diabetic Medicine, 12: 1126-1131.

The sweet secret of dark chocolate.

Hu, F.B.; Stampfer, M.J. and Manson, J.E. (1998):

Current Atherosclerosis Reports.; 1: 204-209.

WC, fish and omega-3 fatty acid intake and risk of coronary heart disease in women. JAMA; 287:1815-1821.

Low dietary magnesium is associated with insulin resistance in a sample of young, nondiabetic Black Americans.

Fat versus carbohydrate in insulin resistance, obesity, diabetes and cardiovascular disease. Lipid metabolism and therapy.

Current Opinion in Clinical Nutrition & Metabolic Care. 6(2):165-176.

Hypponen, E. (2004):

Almonds and almond oil have similar effects on plasma lipids and LDL oxidation in healthy men and women.

J. Nutr.; 132, 703–707.

DNA damage and the effect of antioxidants in -treated mice.

Dark chocolate inhibits platelet aggregation in healthy volunteers.

Ishibashi, F.; Hidaka, H.; Fields, R.M.; Howard, B.V. and Bennett, P.H. (1981) :

Alloxan action on glucose metabolism in cultured fibroblasts. I. Stimulation and inhibition of glucose utilization.

Ismail, M. (2005):
Diet, Nutrition and Prevention of Chronic Non-Communicable Diseases Survey, phase 1. For the Diet, Nutrition and Prevention of Chronic Non-Communicable Diseases (DNPCNCD) investigation team. Cairo, NNI.

Dark chocolate composition increases HDL cholesterol concentration and chocolate fatty acids may inhibit lipid peroxidation in healthy human.

Free radical biology and medicine; 37(9): 1351-1359.

Long-term almond supplementation without advise on food replacement induces favourable nutrient modifications to the habitual diets of free-living individuals.

British journal of nutrition.; 92 (3):533-540.

Janine, M.P.; Welma, O. L. and Johann C. J. (2005):

A Systematic Review of the Effects of Nuts on Blood Lipid Profiles in Humans.

J. Nutr.; 135: 2082–2089.

Free radical scavengers can modulate the DNA-damaging action of alloxan.

Acta Biochimica Polonica; 50 (1):205–210.

Type 2 diabetes in teens secrets for success.

John Wiley & Sons, Inc.

Nutritional strategies for the diabetic and prediabetic patients.

Effect of cocoa bran on low-density lipoprotein oxidation and fecal bulking.

Jenkins, D.J.; Kendall, C.W. and Marchie, A. (2002):

Dose response of almonds on coronary heart disease risk factors: blood lipids, oxidized lowdensity lipoproteins, lipoprotein(a), homocysteine, and pulmonary nitric oxide: a randomized, controlled, crossover trial.

Circulation; 106:1327–32.

Almond decrease postprandial glycemia, insulinemia, and oxidative damage in healthy individuals.

Jennifer, A.N. and David, R.J. (2004):

Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women.

Jennifer, C.L. (2007):

The impact of nuts on diabetes and diabetes risk.

Journal Current Diabetes Reports; 5: 379-384.

Jiang, R.; Manson, J.E. and Stampfer, M.J. (2002):

Nut consumption and body weight.

Kathleen, L. M. and Sylvia, E. S. (2004):)

Food, nutrition and diet therapy.

Cocoa antioxidants and cardiovascular health.

Kim, Y.I. (2000):

Flavonoid intake and risk of chronic diseases.

Nutrient composition of hazelnut (Corylus avellana L.) varieties cultivated in Turkey.
Food chemistry; 99(3):509-515.

Inhibition of LDL oxidation by cocoa.

Lancet; 348:1514.

High insulinogenic nutrition, an etiologic factor for obesity and the metabolic syndrome.

Metabolism; 52:840-844.

Activation of acetyl-CoA carboxylase by a glutamate and magnesium-sensitive protein phosphatase in the islet beta-cell.

Diabetes; 50(7):1580-7.

The effects of nuts on coronary heart disease risk.

Evidence that the antioxidant flavonoids in tea and cocoa are beneficial for cardiovascular health.

High-monounsaturated fatty acid diets lower both plasma cholesterol and triacylglycerol concentrations.

Nuts and their bioactive constituents: effects on serum lipids and other factors that affect disease risk.

Cardioprotective effects of chocolate and almond consumption in healthy women.

Suppressive effects of cacao liquor polyphenols (CLP) on LDL oxidation and the development of atherosclerosis in Kurosawa and Kusanagi-hypercholesterolemic rabbits.

Review: Health Effects of Cocoa Flavonoids.

Food Science and Technology International; 11 (3): 159-176.

Chocolate intake increases urinary excretion of polyphenol-derived phenolic acids in healthy human subjects.

Plant sterol and sterol margarines and health.

BMJ.; 320: 861-864.

Chocolate contains additional flavonoids not found in tea. *Lancet; 354:1825 (letter).*

A diet rich in dietary fiber from cocoa improves lipid profile and reduces malondialdehyde in hypercholesterolemic rats.

Nutrition; Apr. 23(4):332-41.

Characterization of cocoa fiber and its effect on the antioxidant capacity of serum in rats.

Cocoa has more phenolic phytochemicals and a higher antioxidant capacity than teas and red wine.

Ludwig, D.S. (2002):

The glycemic index physiological mechanisms relating to obesity, diabetes, and cardiovascular disease.

JAMA.; 287: 2414-2423.

Luna, F.; Crouzillat, D.; Cirou, L. and Bucheli, P. (2002):

Luther, B.T.; Ben, H.B and Barbra-Jo, S. (1987):

Diabetes mellitus in children and adolescents.

Volume 29 in the Series, W. B. Saunders Company.
Luther, P. and Baldwin, D.J. (2004):

Applied and Environmental Microbiology; 74(14):4264-4270.

Tocopherols and total phenolics in 10 different nut types. *Food Chemistry*; 98(2): 381-387.

Mary, B. E.; Marguerite, M.; Engler, R.; Chung, Y. Chen; Mary, J. M.; Amanda, B.; Elisa, Y. C.; Ho-Kyung, K.; Paul, M.; Steven, M. P.; Jeffrey,

Flavonoid-Rich Dark Chocolate Improves Endothelial Function and Increases Plasma Epicatechin Concentrations in Healthy Adults.

J. of the American College of Nutrition; 23(3): 197–204.

Effect of dietary fatty acids on serum lipids and lipoproteins. A meta-analysis of 27 trials.

Effects of hazelnut-enriched diet on plasma cholesterol and lipoprotein profiles in hypercholesterolemic adult men.

European journal of clinical nutrition; 61(2):212-220.

Messiha, F.S. (1990):

Effects of almonds and anis oils on mouse liver alcohol
dehydrgenase, aldehyde dehydrogenase and heart lactate dehydrogenase isoenzymes.

Toxicology letters; 54(2/3):183-188.

The effect of almonds on plasma lipids in persons with prediabetes.

The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer.

Determination of flavonoids and phenolics and their distribution in almonds.

Diet, physical activity, and gallstones—a population-based, case-control study in southern Italy.

Dietary antioxidant intake and risk of type-2 diabetes.

Mora, P.F. (2005):

Post-transplantation diabetes mellitus.

Morgan, W.A.; Clayshulte, B.J. (2000):

Moursi, A. (1992):

Diabetes mellitus in Egypt.

Dietary intake of trans fatty acids and systemic inflammation in women.

Murphy, K.J.; Chronopoulos, A.K. and Singh, I. (2003):

Dietary flavanols and procyanidin oligomers from cocoa (Theobroma cacao) inhibit platelet function.

Dark chocolate consumption increases HDL cholesterol concentration and chocolate fatty acids may inhibit lipid peroxidation in healthy humans.

Ingestion of proanthocyanidins derived from cacao inhibits diabetes induced cataract formation in rats.

National Cholesterol Education Program (1994):

second report of the expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel II). _Circulation;_ 89:1333–1345.

National Diabetes Fact Sheet (NDFS) (2005):

_Nutritional recommendations and principles for people with diabetes mellitus (1998):

Diabetes Care; 21(S-1):S32–S35.

Regulation of gene expression by insulin.

Risk factors for type 2 (non-insulin-dependent) diabetes mellitus: Thirteen and one-half years of follow-up of the participants in a study of Swedish men born in 1913.

Diabetologia; 31:798-805.

Vitamin B6 supplementation can improve peripheral polyneuropathy in patients with chronic renal failure on high-flux haemodialysis and human recombinant erythropoietin.

Increased magnesium intake prevents hyperlipidemia and insulin resistance and reduces lipid peroxidation in fructose-fed rats.

Chemical composition, and antioxidant and antimicrobial activities of three hazelnut (Corylus avellana L.) cultivars.

Cocoa flavanols lower vascular arginase activity in human endothelial cells in vitro and in erythrocytes in vivo.

Elsevier Archives of Biochemistry and Biophysics.

Chronic consumption of a flavanol- and procyanindin-rich diet is associated with reduced levels of 8-hydroxy-2'-deoxyguanosine in rat testes.

Ingestion of proanthocyanidins derived from cacao inhibits diabetes-induced cataract formation in rats.

The antioxidative substances in cacao liquor.

Ozdemir, M.; Açkurt, F.; Kaplan, M.; Yıldız, M.; Loker, M.;

Evaluation of new Turkish hybrid hazelnut (*Corylus avellana* L.) varieties: fatty acid composition, α-tocopherol content, mineral composition and stability.

Food Chemistry; 73, 411-415.

Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women.

Flavonoid B-ring chemistry and antioxidant activity: fast reaction kinetics.

Comparison of the effects of zinc alone and zinc associated with selenium and vitamin E on insulin sensitivity and oxidative stress in high-fructose-fed rats.

Journal of Trace Elements in Medicine and Biology; 21(2): 113-119.
Fructose Prefeeding Reduces the Glycemic Response to a High-Glycemic Index, Starchy Food in Humans.

Enzymatic color method to determine urea in serum.

Discovering Nutrition.
Jones and Bartlett Publishers.

Inhibition of in vitro low-density lipoprotein oxidation by oligomeric procyanidins present in chocolate and cocoa.

Almonds in the diet simultaneously improve plasma α-tocopherol concentrations and reduce plasma lipids.

The effects of diet high in monounsaturated fat from hazelnuts on plasma cholesterol and lipoproteins.

Impaired mitochondrial activity in the insulin resistant offspring of patients with type 2 diabetes.
Modulators of insulin action and their role in insulin resistance.
Diabetologia; 47: 170-184.

Dietary fiber and some elements in nuts and wheat brans.

Protective effect of glutathione and selenium against alloxan induced lipid peroxidation and loss of antioxidant enzymes in erythrocytes.
Experimental and Molecular Medicine; 32.(1): 12-17.

Cacao procyanidins; major flavonoids and identification of some minor metabolites.
Phytochemistry; 30:1657–1663.

Chocolate and cardiovascular health.

Receptor-regulated translocation of endothelial nitric-oxide synthase.

Raloff, J. (2000):
Chocolate hearts: yummy and good medicine?

Effects of oleate-rich and linoleate-rich diets on the susceptibility of low density lipoprotein to oxidative modification in mildly hypercholesterolemic subjects.

Chocolate consumption, fecal water antioxidant activity, and hydroxyl radical production.

Reported of the American Institute of Nutrition adhoc writing committee on the reformulation of the AIN-76 A Rodent diet.

Cocoa inhibits platelet activation and function.

Reitman, S. and Frankel, S. (1957):
A colorimetric method for the determination of serum glutamic oxaloacetic and glutamic pyruvic transaminase.

Risk factor for non-insulin dependent diabetes.

Flavonoids in health and disease.
New York: Marcel Dekker.

Richardson, D.G. (1997):
The health benefits of eating hazelnuts, implications for blood lipid profiles, coronary heart disease, and cancer risks.

Comparison of the antioxidant activity of commonly consumed polyphenolic beverages (coffee, cocoa, and tea) prepared per cup
serving.

Vegetable, Fruit and Cereal fiber intake and risk of coronary heart disease among men.

Nutritional value of hazelnut (*Corylus avellana* L).

Association of diabetes, serum insulin, and C-peptide with gallbladder disease.

Nut and Seed Consumption and Inflammatory Markers in the Multi-
Ethnic Study of Atherosclerosis.

Am. J. Epidemiol.; 163:222–231.

The effect of Malaysian cocoa extract on glucose levels and lipid profiles in diabetic rats.

J. Ethnopharmacol; 8; 98(1-2):55-60.

Serum lipid response to the graduated enrichment of a Step I diet with almonds: a randomized feeding trail.

Polyphenolic flavanols as scavenger of aqueous phase radicals and as chain-breaking antioxidants.

Salmeron, J.; Manson, J.E. and Stampfer, M.J. (1997b):

Dietary fiber, glycemic load and risk of non-insulin-dependent diabetes mellitus in women.

JAMA; 277: 472-477.

Altering dietary protein type quantity reduces urinary albumin excretion without affecting plasma glucose concentration in BKS.cg-m+lepr/lepr (db/db)mice.

Journal of Nutrition; 133:673-678.
Santos, B.C. and Scalber, A. (2000):

Proanthocyanidins and tannin-like compounds: nature, occurrence, dietary intake and effects on nutrition and health.

Dietary intake and bioavailability of polyphenols.

J. Nutr.; 130:2073S–85S.

Efficacy of a National Cholesterol Education Program Step 2 diet in normolipidemic and hypercholesterolemic middle-aged and elderly men and women.

Cholesterol and the risk of renal dysfunction in apparently healthy men.

Sekiya, M.; Yahagi, N.; Matsuzaka, T.; Najima, Y.; Nakakuki, M.; Nagai,

Polyunsaturated fatty acids ameliorate hepatic steatosis in obese mice by SREBP-1 suppression.

Hepatology; 38:1529-1539.

Effect of nut consumption on plasma polyphenol, antioxidant capacity and lipid peroxidation of healthy humans.

FASEB Journal; 22:lb734.

Calcium supplementation of chocolate: Effect on cocoa butter digestibility and blood lipids in humans.

The physical form of hazelnuts does not alter their effect on plasma cholesterol. *FASEB Journal*; 22:1092.4.

Randomised controlled trial of cardioprotective diet in patients with recent acute myocardial infarction: results of one year follow-up.

BMJ.; 304:1015-1019.

Effects of vitamin E on serum cytokine levels in healthy adults.

Diet improves serum lipid and vitamin E levels in healthy adults.

Statistical methods .

6thed. Iowa State College. U.S.A.

Song, Y.; Manson, M.E. and Buring, J.E. (2003):

Dietary magnesium intake in relation to plasma insulin levels and risk of type-2 diabetes in women.

Insulin resistance and hypertension.

Effect of a diet high in monounsaturated fat from almonds on plasma cholesterol and lipoproteins.

Spiller, G.A.; Jenkins, D.A.J.; Bosello, O.; Gates, J.E.; Cragen, L.N. and
Bruce, B. (1998):

Nuts and plasma lipids: An almonds-based diet lowers LDL C while preserving HDL-C.

Effects of plant-based diets high in raw or roasted almonds or roasted almond butter on serum lipoproteins in humans.

Stamler, J.; Vaccaro, O. and Neaton, J.D. (1993):

Beyond cholesterol: Modifications of low-density lipoprotein that increase its atherogenicity.

Cocoa and chocolate flavonoids: implications for cardiovascular health.

Chocolate and Blood Pressure in Elderly Individuals With Isolated Systolic Hypertension.
JAMA; 290(8):1029-1030.

Almond (Prunus dulcis L.) Protein Quality.
Plant Foods for Human Nutrition (Formerly Qualitas Plantarum); 60 (3): 123-128.

Current views on the nutritional value of chocolate.

Chocolate and blood pressure in elderly individuals with isolated

The Expert Committee on the diagnosis and classification of diabetes mellitus follow up report on the diagnosis of diabetes mellitus (2003):

Diabetes care, 26: 3160-3167.

Trinder, P. J. (1959):

Tacrolimus important of insulin secretion in isolated rat islets occurs at multiple distal sites in stimulus secretion coupling. *Endocrinology;* 145: 2264-2272.

UK Prospective Diabetes Study (UKPDS) group (1998):

Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33).

USDA. (1998):

USDA. (2004):
Citation for USADA Data: USDA National Nutrient Database for Standard Reference, Release 17.

Ustun, N.S. and Tosun, I. (2000):

The composition and nutritional importance of hazelnut.

Vinson, J.A.; Proch, J. and Zubik, L. (1999):

Phenol antioxidant quantity and quality in foods: Cocoa, dark chocolate, and milk chocolate.

Plant polyphenols exhibit lipoprotein-bound antioxidant activity using an in vitro oxidation model for heart disease.

Chocolate is a powerful ex vivo and in vivo antioxidant, an antiatherosclerotic agent in an animal model, and a significant
contributor to antioxidants in the European and American diets.

J. of agricultural and food chemistry; 54(21):8071-8076.

Vinson, J.A.; Su, X.; Zubik, L. and Bose, P. (2001):

Phenol antioxidant quantity and quality in foods: fruits.

Virgili, F.; Scaccini, C.; Hoppe, P.P.; Kra¨mer, K. and Packer, L. (2001):

Vita, J.A. (2005):

Polyphenols and cardiovascular disease: effects on endothelial and platelet function.

Vlachopoulos, C.; Alexopoulos, N. and Stefanadis, C. (2006):

Effect of dark chocolate on arterial function in healthy individuals:cocoa instead of ambrosia?

Current Hypertension Reports; 8(3):205-211.

Vogel, A. I. (1975):

A textbook of practical organic chemistry.

2th.English Language Book Society and Longman Group Ltd.

A dose-response effect from chocolate consumption on plasma epicatechin and oxidative damage. *J. Nutr.;* 130:2115S–9S.

Advanced glycation and products, their receptors, and diabetic angiopathy.

Diabetic Metab (Paris), 27: 535-542.

Weisburger, J.H. (2000a):

Weisburger, J.H. (2000b):

Almonds vs complex carbohydrates in a weight reduction program.

Int. J. Obes. Relat. Metab. Disord.; 27: 1365–1372.

William, E.C. (1999):

Wiseman, H.; O’Reilly, J.D. and Adlercreutz, H. (2000):
Isoflavone phytoestrogens consumed in soy decrease F(2)-isoprostane concentrations and increase resistance of low-density lipoprotein to oxidation in humans.

Woo, K.S; Ckook, P. and Yu, C.W. (2004):

World health organization (WHO) (2004):

www.treenuts.org

Action of capparis decidua against alloxan-induced oxidative stress and diabetes in rat tissues.

Pharmacological Research; 36(3):221-228(8).

Effect of cocoa powder and dark chocolate on LDL oxidative susceptibility and prostaglandin concentrations in humans.

Acute effect of oral flavoniod-rich dark chocolate intake on coronary circulation, as compared with non-flavoniod white chocolate, by transthoracic Doppler echocardiography in healthy adults.

International Journal of Cardiology.

Vitamin E supplementation and cardiovascular events in high-risk patients. The heart outcomes prevention evaluation study investigation.

Substituting walnut for monounsaturated fat improves the serum lipid profile of hypercholesterolemic men and women, A randomized crossover trail.

Effect of fortified bread with some plant seeds on diabetic rats

By
Hanan Amin Abdel-Mogoud Hessien

Nutrition and Food Science Department,
Faculty of Home Economics- Helwan University

ABSTRACT

The present work was conducted to manufacture fortified bread with turmeric and some plant seeds suitable for diabetes and study the effect of fortified turmeric bread with fenugreek, flaxseed and pumpkin seeds on glucose, lipids profile, kidney functions and liver enzymes in serum of diabetic rats. Two main experimental groups were established: Group 1 (n = 6 rats) used as a negative control group fed on diet containing 300 g unfortified bread. Group 2(60 rats): were injected with alloxan (150 mg/kg body weight) to induce hyperglycemia and fed on basal diet, then this group was divided into ten subgroups (6 rats each). Subgroup (1) fed on diet containing 300 g unfortified bread (as a positive control group). Subgroups (2) fed on diet containing 300 g fortified bread with (1.5%) turmeric. Subgroups from (3 -10) fed on diets containing 300 g fortified turmeric bread with 5% and 15% (fenugreek, flaxseed, pumpkin seeds and combination of all seeds), respectively. Injected rats with alloxan caused significant decrease in food intake, BWG %, HDL-c, calcium and phosphorus while the mean values of serum glucose, cholesterol, triglycerides, LDL-c, VLDL-c, uric acid, urea nitrogen, creatinine, AST, ALT, and ALP, heart, kidney and liver weight / body weight % increased significantly in the positive control group, as compared to the negative control group. Treated diabetic rats with the fortified bread with turmeric (1.5%) and fortified turmeric bread with fenugreek, flaxseed, pumpkin seeds and combination of all these seeds improved all parameters, especially the group fed diet containing fortified turmeric bread with the combination of fenugreek, flaxseed and pumpkin seeds (15%).

Key words: hyperglycemia, bread, turmeric, fenugreek, flaxseed, Pumpkin, glucose, lipids profile, kidney functions, liver enzymes, calcium, phosphorus, serum.
8-References

Mani, U.V.; Mani, I.; Biswas, M. and Kumar, S.N. (2011): An open-label study on the effect of flax seed powder (*Linum usitatissimum*)

glucose, plasma insulin, and glucose homeostasis related enzyme activities in diabetic db/db mice. *Mol Nutr Food Res.*

USDA Nutrient database.

